
JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007 1

Use and advances in the Active Grammar-based
Modeling architecture

L.J. Manso, L.V. Calderita, P. Bustos, A. Bandera

Abstract—The choice of using a robotic architecture and one
of its possible implementations is one of the most crucial design
decisions when developing robots. Such decision affects the whole
development process, the limitations of the robot, and changing
minds can be prohibitively time consuming. This paper presents
the reviewed design and the most relevant implementation issues
of the Active Grammar-based Modeling architecture (AGM), as
well as the latest developments thereof. AGM is flexible, modular
and designed with computation distribution in mind. In addition
to a continuous refactoring of the API library and planner, the
most relevant improvements are an enhanced mission specifi-
cation syntax, support for representations combining symbolic
and metric properties, redesigned communication patterns, and
extended middleware support. A few use examples are presented
to demonstrate successful application of the architecture and why
some of its features were needed.

Index Terms—robotic architectures, artificial intelligence

I. INTRODUCTION

ROBOTIC architectures aim to define how the different
software modules of a robot should interact. They are of

crucial interest because multiple properties of the robots are
affected by the architecture used. Most implementations of
advanced architectures provide users with reusable domain-
independent modules, such as executives or planners, to avoid
forcing users reinventing the wheel for every robot. These
implementations are important for the roboticists because they
influence the development process, the range of middleware
and programming languages supported. Modularity and scala-
bility are also affected by the concrete implementation of the
architecture.

Almost all advanced autonomous robots rely on some form
of a three-tiered robotics architecture (see [4]) in which
one can find a reactive layer, a plan execution layer and a
deliberative layer that monitors the state of the robot’s internal
world model to update the plan. The main differences come
from implementation issues such as the middleware used,
how intermediate-level modules and high-level modules such
as the planner and the executive communicate, or how is
the robots’ internal model represented. The Active Grammar-
based architecture (AGM) is no exception, proposing a detailed
description of how the software modules of the robots’ can
interact and proposing a particular world model structure.

In particular, AGM world models are multi-graph structures
with typed nodes (symbols) and edges (predicates provid-
ing relationships between symbols), where the nodes can

L.J. Manso, L.V. Calderita and P. Bustos are with the Computer and
Communication Technology Department of Universidad de Extremadura.
e-mail: {lmanso,lvcalderita,pbustos}@unex.es

A. Bandera is with the Electronic Technology Department of Universidad
de Málaga.
e-mail: ajbandera@uma.es

be attributed with geometric properties. These attributes are
supposed not to affect the plan, since the planner do not
take them into account. Formally, these graph models can be
defined as tuples G = (V,E) where V is the set of nodes
and E the set of edges. Nodes are tuples n = (in, tn, an),
where in is a string identifier, tn is represents the type of
the node and an is a string to string mapping used to store
an arbitrary number of attributes for the symbols. Edges are
tuples e = (se, de, te), where se and de are the identifiers of
the source and destination nodes of the edge and te is a string
used to define a type for the edges. This kind of graph is used
to represent the robots’ knowledge, to describe how the world
models can change and to specify missions. See figure 2.

The architecture is built around the representation. There is a
deliberative module that, based on the robot’s domain and goal,
proposes a plan. The rest of the architecture is composed of a
pool of semi-autonomous software modules –named agents in
this context, as in M. Minsky’s Society of Mind [10]– which
are given the plan, can read and modify the representation, and
are in charge of performing a subset of actions. In the simplest
scenario each action is executed by a single agent, but actions
can also be executed by multiple agents in collaboration.
Agents can in turn be arbitrarily modularized, controlling their
own software modules. The deliberative module is also in
charge of managing the representation, accepting or rejecting
the update proposals made by the agents. The diagram of the
current architecture is shown in figure 1.

The behavior of these agents range from blindly contributing
to the execution of the first action of the plan to a pure reactive
behavior1. Regardless of this, they can modify the model or
read it in order to make the robot reach its goal. For example,
the behavior of some perceptual agents can be purely reactive,
behaving independently of the current plan (e.g., an agent in
charge of passively detecting persons). On the other hand,
there can be agents in charge of modifying the model when
necessary, not necessarily performing any physical action.

Domain descriptions are sets of graph-rewriting rules de-
scribing how an action or percept can modify the robots’ world
models. Each rule in these sets is composed of a left-hand side
pattern (LHS) and a right-hand side one (RHS), and states
that, starting from any valid world model, the substitution of
the pattern in the LHS by the pattern in the RHS yields a
valid world model. This information is used by the executive
to compute the sequence of actions that constitutes each plan
and to verify that the world models held by the robots are
valid. See [6] for a deeper description of the used formalism.

1Agents are given the full plan, not just the first action, so they can
anticipate further actions (e.g., robots can lift their arms to prepare for grasping
tasks when walking towards the corresponding object).



2 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

Fig. 1: Redesigned diagram of AGM. The grammar-based controller is composed of the executive, the mission specification, the
world grammar (i.e., domain description) and the world model. The planner is used by the executive to find plans and verify
change proposals. The agents interact with the world perceiving or acting according to the plan, and propose to the executive
model updates to acknowledge new information gathered from the environment or their actions. The executive then broadcasts
to the agents those change-proposals that are found to be valid. The style of the arrow represents the nature of the information
flow: dashed, thick and thin lines, mean direct access, RPC-like and publish/subscribe communication, respectively. The only
modification in the diagram from the one in [8] is that change proposals are sent to the executive by RPC.

The limitations detected and the new features implemented
are described in section II. To illustrate how AGM can be
used, a selection of concrete examples of use is presented in
section III. The conclusions and future work are presented in
section IV.

II. NEW FEATURES

Since it was first presented in [8] the Active Grammar-based
architecture (AGM) has been used in multiple scenarios and
robots [11], [9], especially in the CORTEX architecture [1],
which is built on top of AGM. This extensive use has raised
several limitations and feature requests. This section describes
how the AGM architecture has evolved over time as the result
of the experience gained through its use.

A. Flexible mission definition

AGM targets, as proposed in [8], were defined as concrete
patterns sought to be found in the robot’s world model
representation. These patterns were specified using a graphical
model. Despite this approach is moderately easy to understand
and is enough for representing most missions (e.g., bringing
objects, going to places, even serving coffee [7]) the missions
could not work with any condition that was not explicitly
represented. A simple example of this limitation can be
seen in Table I, where a clean-the-table mission is specified
using a) the initial approach and, b) the current approach.
Using the former approach the ”table clean” condition had
to be explicitly marked, whereas the current approach allows
avoiding such restriction.

Graphical models are easy to read and share with domain-
experts and have been demonstrated to be faster and less error-
prone. Increasing the expressive power of the visual language
with disjunctive and quantified formulas would probably make
things little less complicated than using a textual language.
Therefore, it was decided to add a new optional textual section
to the mission definition which is applied in conjunction

(a) World model example describing three rooms connected in a row. The
robot is in one of the extremes of the room sequence. The number in the top
of each symbol is its identifier, the word in the bottom is its type.

(b) Rule example (left and right hand side of the rule). It describes using a
graph-grammar rule the preconditions and how the world model is modified
when the robot moves from one room to another. Note that variable identifiers
are used in rule definitions so that they can be used with any set of symbols
satisfying the conditions.

(c) Mission example in which a robot is required to be located in the room
identified with number 4. Note that mission definitions can combine concrete
identifiers (with numbers) and variable ones (the robot x in this case).

Fig. 2: Examples of how the AGM architecture uses graphs
to describe a) world models, b) domain descriptions, and c)
missions.

with the graphic section. The syntax is similar to the one of
PDDL [2].

The solution in Table I.a is clearly easier to read than the one
of Table I.b by domain-experts. However, is was considered



CAZORLA AND MATELLAN : JOPHA PAPER DEMO 3

a) initial proposal:

b) current solution:

1 (forall something:object
2 (not (in something o))
3 )

TABLE I: A clean-the-table mission specified using a) the
initial approach, b) the current approach.

that the gap is not sufficiently big to justify a continuous
monitoring and updating the world to include this kind of
flags.

B. Native support for hybrid representations

The first robots using AGM used a single world reference
frame for geometric information, so the pose of the objects
could easily be specified in the attributes of their correspond-
ing symbols2. However, as the architecture was being used
in more robots, the need for a methodical way to represent
kinematic trees with different reference frames was clear.
Being able to extract this kinematic information with an easy-
to-use API was also desirable.

Among all the possible approaches taken into account,
the decision was to include special transformation edges
describing the kinematic relationships. The rest of the options
were discarded because they made kinematic structures harder
to understand at first sight or because the impact of the model
was bigger (regarding the number of additional symbols and
edges to include). However, to implement these edges, which
are identified with the ”RT” label, it was necessary to enable
edge attributes (a feature that the first AGM proposal missed).
From a formal point of view, only the definition of edges
is affected by this change. Edges are now defined as tuples
e = (se, de, te, ae), where se and de are the source and
destination nodes of the edge, respectively, te is a string used
to define a type for the edges and ae is a string to string map
used to store an arbitrary number of attributes for the edges.

While the initial world models of the robots in AGM are
defined using an XML format, their kinematic trees are usually
defined using specialized file formats such as URDF [12] or
InnerModel [5]. It would be time-consuming and error prone
to manually include and update these kinematic structures in
the robots’ world models if desired. Therefore AGM provides
two tools to automate the task:

2Keep in mind that these models were a directed multi-graphs, where nodes
and edges were typed. Additionally, nodes could have optional attributes to
store non-symbolic information which is not supposed to affect the plan but
is used by some of the agents.

• agminner is a tool provided to include the kinematic
structure of the robot in it’s internal model file.

• libagm is a C++ library which, among other purposes
such as general access to the graph model (see sec-
tion II-D), can be used to extract/update kinematics
specific objects with geometry-oriented API from the
model. Currently, libagm supports InnerModel kinematic
definitions.

One of the advantages of using graph-like structures to
represent the robots’ knowledge is that they are easy to
visualize. However, including their kinematic structures in the
model makes these models too large to be easily visualized.
To overcome this issue the AGM’s model viewer was endowed
with options that hide part of this information. See Figure 3.

C. Improvements on the communication strategy

Model modification proposals were initially published using
one-way communication with the executive so agents did not
get an answer when publishing new proposals. This made
change proposals be overwritten if new proposals arrived at
a fast pace. The issue has been tackled by substituting the
one-way publishing mechanism which raises an exception in
case the executive is busy or the modification is not correct.

Since the support for hybrid models the number of modi-
fications of the model increased dramatically. Publishing the
whole model with every change increased the cost of main-
taining complex hybrid models. Maintaining human models
involves updating a high number of joints and their reference
frames per second. Therefore, the alternative proposed here
is to allow publishing edges one at a time or –in order to
decrease the network overhead– multiple edges per request.

D. libagm

Agents receive the actions they have to perform as part of
the plans sent by the executive. To perform their corresponding
tasks they have to access the symbols included in the current
action, probably other additional symbols and, eventually
modify the graph accordingly. Programmatically implementing
some of these tasks is time-consuming and error-prone, so
libagm has included in its API new methods to ease:

• accessing the symbols in the current action
• accessing edges given the ending symbols
• iterating over the symbols connected to a specific symbol
• publishing modified models, making transparent the

middleware-dependent serialization
• printing and drawing the models

among other minor improvements and those commented in
section II-B.

Additionally, a detailed description of the API and examples
of its use have been written and published in the web3.

E. Middleware support

The first version of the architecture supported the Robo-
Comp framework [3] which, despite of being a full-featured

3http://www.grammarsandrobots.org



4 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

(a) Whole model.

(b) Geometric view of the model.

(c) Model after filtering geometry-only nodes.

Fig. 3: Example of a complex AGM model: a) as it is, b) its
geometric view, c) filtering geometry-only nodes.

Fig. 4: Deployment network of the high level components used
in these examples of use.

framework, its user base is quite limited. Learning to use a new
framework or middleware is time-consuming, so roboticists
may be not sufficiently motivated to change. To overcome this
limitation, support for multiple framework is now underway.

The solution underway allows cooperation between agents
implemented using different frameworks, specifically, Robo-
Comp or ROS. The new executive implements services for
both frameworks and, for each topic to subscribe to or publish,
there is a RoboComp and a ROS version. Of course, since each
of the agents can be programmed using these frameworks, they
can in turn use other lower-level components implemented in
the supported frameworks.

III. USE CASES

Instead of describing a full-featured robot domain we will
introduce several common robot tasks and how they were
solved in a real robot using the new features of the architecture.

Figure 4 depicts the executive and the set of agents used in
these examples along a mission viewer.

A. Changing rooms

For changing the room in which the robot is located the
rule described in figure 2b was used. The robot and the rooms
are explicitly represented using robot and room symbols,
respectively. The current semantic location of the robot is
represented using a link labeled as in from the robot to the
corresponding room symbol. The rule depicted in figure 2b
describes how, given two rooms src and dst so that the robot
(bot) is located in src and there is a link labeled as way from
src to dst, the robot can change rooms. The result of such
action is that the link from bot to src is removed and a new
link from bot to dst is created. Note that, as in the previous
versions of AGM, removed elements are highlighted in red
whereas those created as a result of the rule are highlighted
in green.

From the point of view of the execution of the rule, there are
two independent processes involved in the navigation agent.



CAZORLA AND MATELLAN : JOPHA PAPER DEMO 5

Fig. 5: Graph-grammar rule describing how object grasping
affects the models.

First, when the executive requests the change room rule to
be triggered, the agent sends the corresponding command
to a lower level robot navigation component in charge of
actually moving the platform. Concurrently, it continuously
monitors the pose of the robot using another lower level
localization component. The limits of the rooms are specified
as an attribute of each room’s symbol, so when the robot
actually changes the room the navigation agent can update
the model correspondingly, modifying the in edge as depicted
in figure 2b.

B. Grasping

Grasping objects is slightly more complex than changing
rooms. If there is a robot r and a table t containing an object
o in a room m, if the o is reachable by the robot, such object
can change from being in the table t to being in the robot.

For this task, we benefited from the hybrid models support
combining symbols, relationships between the symbols, and
geometric information. Since the object to grasp and the
robot itself is represented in the model (as in figure 3a) we
can extract an InnerModel object to compute the necessary
geometry-related computations.

As described in section II-A, continuously monitoring the
model to highlight logical conditions (based on symbols
and/or edges) is not necessary anymore. However, geometric
conditions are still necessary to be continuously monitored. It
is the case of the reach/noReach edge that links each object
and its status symbol. Depending on whether the robot can
or cannot reach an object, the grasping agent, modifies the
corresponding link. Only when it is reachable is that the robot
can actually grasp an object. Therefore, before grasping an
object an approaching action is requested by the executive if
necessary (i.e., if the object is not close to the area of the
space where the robot can grasp objects).

If, for any reason, the robot platform starts moving, the
grasping action is paused. To implement this the grasping
agent needs to monitor the movement of the robot platform.
However, access to the platform by the grasping agent is
not recommended. It was already pointed out that the model
holds the robot’s pose as given by a localization component,
however, localization may slightly vary even if the robot is
still. In order to make the grasping agent able to monitor

the raw odometry without providing it with access to the
platform, the navigation agent is also in charge of including
and updating the amount of movement of the robot in the
last seconds as a ”movedInLastSeconds” attribute of the robot
symbol.

C. Human representation

As introduced in section II-C, maintaining geometric human
models involves updating a high number of reference frames
per second. In particular, assuming that for every human a
total of 15 joints are tracked at 30Hz, it would require 450
updates per second per person. If the agent human, the one
in charge of this task would have to perform a remote call to
the executive per joint, it would require 900 remote calls per
second to track two humans in real time.

Thanks to the new interface of the AGM’s executive, it can
now be done with just one call. This made the frequency of
the agent go from 2Hz to 30Hz. Instead of publishing the
edges it would have also been possible to perform structural
change proposals sending the whole world model, but this kind
of behavior would slow the rest of the agents down because
they would have to extract their corresponding extracted
InnerModel objects much frequently.

IV. CONCLUSIONS AND FUTURE WORK

The improvements of the AGM architecture and the soft-
ware provided were presented. Section III described how can
different tasks be implemented using AGM.

There are two current lines of work to improve AGM. First,
support for hierarchical reasoning is underway. It will allow
the planner to avoid taking details into account until necessary.
Second, efforts are being made toward a decentralized repre-
sentation. Currently the executive holds the valid world model,
however, it would be interesting to distribute the issue. To this
end, each agent proposing structural changes would have to
perform the model-checking mechanisms that the executive
currently performs.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-
isterio de Economa y Competitividad Project TIN2015-65686-
C5-5-R, by the Extremaduran Goverment fund GR15120
”Ayudas a Grupos” and FEDER funds.

REFERENCES

[1] Luis Vicente Calderita Estévez. Deep State Representation: an unified
internal representation for the robotics cognitive architecture CORTEX.
PhD thesis, Universidad de Extremadura, 2016.

[2] D. McDermott et al. PDDL: the planning domain definition language.
Technical Report DCS TR 1165, Yale Center for Vision and Control,
1998.

[3] L.J. Manso et al. RoboComp: a Tool-based Robotics Framework. In
Simulation, Modeling and Programming for Autonomous Robots, pages
251–262. Springer, 2010.

[4] E. Gat. On three-layer architectures. Artificial intelligence and mobile
robots, pages 195–210, 1998.

[5] Marco Antonio Gutierrez Giraldo. Progress in robocomp. Journal of
Physical Agents, 7(1):38–47, 2013.



6 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

[6] L.J. Manso. Perception as Stochastic Sampling on Dynamic Graph
Spaces”, school=Escuela Politécnica de Cáceres, Universidad de Ex-
tremadura year=2013. PhD thesis.

[7] L.J. Manso, P. Bustos, R. Alami, G. Milliez, and P. Núñez. Planning
human-robot interaction tasks using graph models. In Proceedings of
International Workshop on Recognition and Action for Scene Under-
standing (REACTS 2015), pages 15–27, 2015.

[8] L.J. Manso, P. Bustos, P. Bachiller, and P. Núñez. A perception-aware
architecture for autonomous robots. International Journal of Advanced
Robotic Systems, 12(174):13, 2015.

[9] Jesús Martınez-Gómez, Rebeca Marfil, Luis V. Calderita, Juan P. Ban-
dera, Luis J. Manso, Antonio Bandera, Adrián Romero-Garcés, and

Pablo Bustos. Toward social cognition in robotics: Extracting and
internalizing meaning from perception. In XV Workshop of Physical
Agents (WAF 2014), León, Spain, pages 93–104, 2014.

[10] Marvin Minsky. Society of mind. Simon and Schuster, 1988.
[11] Adrián Romero-Garcés, Luis Vicente Calderita, Jesús Martı́nez-Gómez,

Juan Pedro Bandera, Rebeca Marfil, Luis J. Manso, Pablo Bustos, and
Antonio Bandera. The cognitive architecture of a robotic salesman.
environment, 15(6):16, 2015.

[12] Martin Theobald, Mauro Sozio, Fabian Suchanek, and Ndapandula
Nakashole. Urdf: Efficient reasoning in uncertain rdf knowledge bases
with soft and hard rules. 2010.


